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Abstract 
 

The operation simulation of Solid Oxide Electrolysis Cell (SOEC) stacks requires 
multiphysics modelling approaches covering electrochemistry, mechanics, fluidics, thermal 
exchanges, etc. At component level, it can be done using CFD/FEM software packages [1], 
[2]. However, at system level where several stacks integrating many components are 
concerned, this kind of simulation is heavily time consuming.  
In this perspective, we intend to simulate the thermal behavior of a stack within a SOEC 
system using a Reduced Order Model approach (ROM) based on the proper orthogonal 
decomposition methodology [3]. A Full Order Model (FOM) has first been developed to 
calculate a large number of operations cases and to constitute a learning cases database. 
Thanks to mathematical analysis, we have decreased the number of degrees of freedom 
and chosen to define subdomains, as homogeneous average media, in which thermal 
equations can be resolved. They reproduce the various parts of the stack having different 
and anisotropic thermal conductivity properties. As a first step, only the thermal transfer by 
conduction inside the stack has been considered as it is the predominant thermal 
phenomenon. Results from the ROM are compared to those from the FOM. The differences 
between the results of the two models, the impact of the selection of learning cases, the 
predictability of the ROM regarding real cases [4] and ultimately the calculation time are 
discussed. 
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Introduction 
 
Numerical simulation of the operation of a solid oxide electrolysis cell (SOEC) stack requires 
a multi-physics approach covering the fields of electrochemistry, mechanics, fluidics, 
thermics etc. When the study concerns the analysis of one physics at a limited scale, 
CFD/FEM softwares appear fully suitable [1], [2]. However, when it addresses system scale, 
it becomes necessary to take into account all the physics involved and the use of those 
classical models becomes no more feasible due to very long calculation times. 
In this context, our study focuses on the implementation of a model reduction methodology. 
Many ways can be considered: by reducing the size of the model, by simulating a 3D object 
in 2D, or by limiting the number of parameters taken into account. An interesting method, 
which we are considering in this work, consists in identifying the virtual axes carrying the 
most information, and in using them for the simulation. The Proper Orthogonal 
Decomposition (POD) is a widely-used reduction approach based on this principle [5], [6], 
[7].It has its roots in a statistical analysis developed at the beginning of the 20th century by 
Pearson [8]. Although improved, this approach remained limited by the computing power 
available at that time. In the 1960s, the approach was developed for fluid mechanics 
applications, such as turbulent flows [9], [10] or vortex flows [11], [12].  
More recently, this reduction methodology with the POD approach has also been used for 
electrochemical and thermochemical systems. The electrochemical reactions taking place 
in batteries were simulated in 1D [13], [14]. Interestingly, heat transfers were added in [14] 
and the reduced model was used for real-time applications. The operation of a PEMFC cell 
in real time has also been reported [15]. Finally, in a thermochemical system for producing 
hydrogen by steam reforming of methane, a reduced model was developed, which enabled 
temperature sensors to be optimally positioned, and the complete thermal map of the system 
to be reconstructed [16]. To the best of the authors' knowledge, POD model reduction 
applied to water electrolysis systems, whatever the technology considered, in 3D, has not 
yet been reported. 
The implementation of the POD approach consists in defining, from a set of experimental or 
numerical data, the axes of major variation on which to project the equations governing the 
system under study. In the work described below, these data sets are obtained by simulating 
the system's return to equilibrium from a defined initial state. Each simulation thus 
constitutes a scenario built from fixed operation parameters and covering significant 
durations. Each moment of this scenario constitutes a snapshot. 
Below, we describe the construction of a physical model to simulate the thermal behavior of 
a SOEC stack, followed by the model reduction process and its validation. 
 

1. Development of a Full Order Model (FOM) 
 

In this work, we model the operation of an electrolysis stack. The stack is made up of 25 
cells of 100 cm², surrounded by two end plates and two mechanical holding devices. The 
geometry of this system is broken down into 5 regions: (1) the ceramic multi-layer, (2) the 
gas inlet zone, (3) the sealing zone around the cell, (4) the end plate and (5) the mechanical 
holding device, Figure-1. These 5 regions are represented by equivalent homogeneous 
media with anisotropic properties (Table 1). This geometry is discretized into 7947 elements, 
21 nodes along the x and y axes and 17 nodes along the z axis. 
 
 
 
 
 



 EFCF 2024: 16th European SOFC & SOE Forum  2 – 5 July 2024, Lucerne Switzerland 

 
A1511 / Page 3-9 

 

    

Table 1 : Properties of equivalent homogeneous media 

Regions 𝐶𝑝 (𝐽. 𝐾−1. 𝑘𝑔−1) 𝜌 (𝑘𝑔.𝑚−3) 𝜆𝑥𝑦 (𝑊.𝑚−1. 𝐾−1) 𝜆𝑧 (𝑊.𝑚−1. 𝐾−1) 

Ceramic multi-
layer 

496.9 2384.9 10.8 1.4 

Gas inlet zone 582.3 2384.9 11.9 1.06 

Sealing zone 581.3 3559.4 10 0,38 

End plate 660 11000 34.29 16.8 

Mechanical 
holding device 

660 7700 24 24 

  
 
In the present work, only heat exchanges by conduction, considered to be predominant, are 
taken into account. Convective heat exchanges within stack material are assumed to be 
negligible. However, heat source or heat sink effects linked to gas inlet temperatures are 
integrated in the thermal balance. 
Consequently, the thermal behavior of the stack is assumed to follow the Fourier equation: 

 (𝜌𝐶𝑝)𝑖𝑗𝑘

𝜕𝑇𝑖𝑗𝑘

𝜕𝑡
=

𝜕2(λ𝑥𝑦𝑇𝑖𝑗𝑘)

𝜕𝑥2
+

𝜕2(λ𝑥𝑦𝑇𝑖𝑗𝑘)

𝜕𝑦2
+

𝜕2(λ𝑧𝑇𝑖𝑗𝑘)

𝜕𝑧2
+ 𝑞 (1) 

With 𝑖, 𝑗 𝑎𝑛𝑑 𝑘 the coordinates of the nodes along 𝑥, 𝑦 𝑒𝑡 𝑧, 𝑇𝑖𝑗𝑘 the temperatures (𝐾), 𝜌 the 

density (𝑘𝑔.𝑚−3), 𝐶𝑝 the thermal capacity (𝐽. 𝐾−1. 𝑘𝑔−1), 𝜆𝑥𝑦 et 𝜆𝑧 the conductivities 

(𝑊.𝑚−1. 𝐾−1) and 𝑞 (𝑊.𝑚−3) combines the source terms and boundary conditions 
calculated by the equations given below. 
 
The power of conduction thermal exchanges (Pgas) between the ceramic multilayer and 
gases is calculated with the following expression: 

 𝑃𝑔𝑎𝑠 =
�̇�𝑆𝑚𝑖𝑥𝐶𝑝𝑆𝑚𝑖𝑥(𝑇𝑆𝑚𝑖𝑥

𝑖𝑛 − 𝑇𝑆𝑚𝑖𝑥
𝑜𝑢𝑡 ) + �̇�𝑎𝑖𝑟𝐶𝑝𝑎𝑖𝑟(𝑇𝑎𝑖𝑟

𝑖𝑛 − 𝑇𝑎𝑖𝑟
𝑜𝑢𝑡)

𝑉𝑐𝑒𝑟𝑎𝑚
 (2) 

With 𝑃𝑔𝑎𝑠 the power (𝑊.𝑚−3), �̇�𝑆𝑚𝑖𝑥 and �̇�𝑎𝑖𝑟 the mass flow rate (𝑘𝑔. 𝑠−1) of 𝑆𝑚𝑖𝑥 (steam 

and hydrogen mixture) and of air, 𝐶𝑝𝑆𝑚𝑖𝑥 and 𝐶𝑝𝑎𝑖𝑟 the thermal capacities of the steam and 

hydrogen mixture and of air (𝐽. 𝐾−1. 𝑘𝑔−1), 𝑇𝑆𝑚𝑖𝑥
𝑖𝑛  and 𝑇𝑎𝑖𝑟

𝑖𝑛  the gas inlet temperatures (𝐾) and 

𝑇𝑆𝑚𝑖𝑥
𝑜𝑢𝑡  et 𝑇𝑎𝑖𝑟

𝑜𝑢𝑡 the gas outlet temperatures (𝐾). These temperatures are taken to be equal to 

the temperature of the side surface of the ceramic multilayer. 𝑉𝑐𝑒𝑟𝑎𝑚 is the volume of the 

ceramic multilayer (𝑚3). 

 

Figure-1 : Schematic of the stack broken down in 5 regions with average homogeneous 
properties (1) ceramic multi-layer, (2) gas entrance area, (3) sealing area surrounding the 

cell, (4) end plate and (5) mechanical holding device   
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In addition to heat exchange within the ceramic multilayer, the electrochemical reaction 
generates a thermal power given by the expression: 

 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑜 =
(𝑈 − 𝑈𝑇𝑁) ∗ 𝑖 ∗ 𝑛𝑐𝑒𝑙𝑙 ∗ 𝑆𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑟𝑎𝑚
 (3) 

With 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑜 the power resulting from the electrochemical reaction, 𝑈 the operation voltage 
of each cell (𝑉), 𝑈𝑇𝑁 the thermoneutral voltage of each cell (𝑉), 𝑖 the current density of each 

cell (𝐴. 𝑐𝑚−2), 𝑛𝑐𝑒𝑙𝑙 the number of cell in the ceramic multilayer and 𝑆𝑐𝑒𝑙𝑙 the surface of each 

cell (𝑐𝑚²). Equations (2) and (3) are uniformly applied in the area of the ceramic multi-layer 
(Volumetric flux, Figure-1).  
 
On the external faces, the radiative exchange between the stack and the furnace is 
calculated by the equation: 

 𝜑𝑗 = −𝜎0𝐸(𝑇𝑠𝑡𝑎𝑐𝑘,𝑗
4 − 𝑇𝑓,𝑗

4) (4) 

With 𝜑𝑗 the power generated or absorbed (𝑊.𝑚−2) by the surface 𝑗 of the stack (𝑗 = 1,… , 6), 

𝜎0 the Stefan-Boltzmann constant (𝜎0 = 5.67. 10−8 𝑊.𝑚−2. 𝐾−4), 𝐸 the emissivity and 𝑇𝑠𝑡𝑎𝑐𝑘,𝑗 

and 𝑇𝑓,𝑗 the temperatures (𝐾), of the surfaces 𝑗 of the stack and 𝑗 of the furnace facing each 

other. This power is calculated and applied uniformly over the entire surface 𝑗 of the stack 
considered (Surface flux, Figure-1). 
 
These equations are solved in the FOM model following a CFD/FEM resolution, and allow 
the thermal behavior of the stack to be simulated. An example of results is shown in Figure-
2, in which the stack is subjected to 4 current density plateaus: 0.4, 0.8, 1.2 and 1.25 A/cm². 
These current density levels have been chosen to set the stack to endothermic (0.4, 
0.8 A/cm²), thermo-neutral (1.2 A/cm²) and exothermic (1.25 A/cm²) conditions. The 
transition from one operating point to the next follows a ramp of 100s. Each operating step 
lasts 3000s. 
 

 

Figure-2: Results of the FOM: variation of stack temperatures, in the centre of the ceramic 
multilayer, on the side surfaces of the stack and on the top and bottom faces of the stack. 
The stack is subjected to 4 different current intensity plateaus during this simulation: 0.4, 

0.8, 1.2, 1.25 A/cm² 
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Under the chosen flux and current conditions, the thermoneutral temperature is 750°C, so 
the first two operation conditions are endothermic, the third is thermoneutral and the last is 
exothermic. In the ceramic multilayer, both at the center and on the sides of the stack, 
temperatures initially stabilize below the initial temperature, confirming the endothermic 
nature of the operation. Between these two stabilization levels, a minimum temperature is 
reached, corresponding to the current density at which the endothermic nature of stack 
operation is at its maximum. As expected, the current level corresponding to thermo-neutral 
condition (1.2 A/cm²) is close to 750°C. The last intensity level brings the cell to a 
temperature higher than the initial temperature and the thermoneutral temperature. The top 
and bottom surfaces of the stack have both significantly different thermal behaviors 
compared to the other faces, due to the properties of the materials they are made of. As 
shown in Figure-2, the thermal interaction with the furnace predominates over the 
electrochemical power absorbed or released by the stack core. Thus, even in the 
endothermic regime, the lower face of the stack heats up to the temperature of the furnace, 
while in the exothermic regime the upper face of the stack remains at a temperature well 
below that of the thermo-neutral. 
We also found that temperature stabilization times are longer on the bottom and top faces 
(>3000s) than on the side faces and ceramic multi-layer (<3000s), due to different thermal 
conduction properties of these regions. 
This FOM, whose results were found to be rather faithful to the actual thermal behavior of a 
stack in operation, has been used to calculate various operation scenarios. Some of these 
scenarios have been used to build the matrix of training cases for the model reduction 
approach. Indeed, each time step of a learning scenario constitutes a learning case. 
 

2. Development of a Reduced Order Model (ROM)  
 

Methodology 
The reduction method chosen is the POD, the mathematical principle presented here comes 
from [17], it allows the calculation of a matrix of size 𝑁 ∗ 𝑀 to be replaced by that of a matrix 
of smaller size. 

The temperature matrix 𝚯(𝒙, 𝑡)  can be represented by a dataset 𝜃(𝒙, 𝑡𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , where 𝑖 = 1,… ,𝑀 

represents the index of time steps and 𝒙 is the vector of x, y and z coordinates discretized 

on a spatial scale of 1,… ,𝑁 with 𝑁 = 𝑁𝑥 ∗ 𝑁𝑦 ∗ 𝑁𝑧. The vector 𝜃(𝒙, 𝑡𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   gives a thermal 

mapping of the stack at each instant 𝑡𝑖. The POD consists, from the 𝑀 mappings of size 𝑁, 
in calculating an orthonormal basis in which the temperature field, at each instant 𝑡𝑖, can be 
written by the product of a diagonal matrix (𝑨) of singular values of size 𝑚𝑖𝑛(𝑁,𝑀) and the 

spatial (𝑿) and temporal (𝑽𝑻) eigenvector matrices. We therefore try to write: 

 𝚯(𝒙, 𝑡) = 𝚾 ∗ 𝑨 ∗ 𝑽𝑻 (5) 

With 𝚯(𝒙, 𝑡) the temperature matrix, 𝑿 the matrix of spatial eigenvectors, 𝑨 the diagonal 

matrix of singular values and 𝑽𝑻 the transpose matrix of temporal eigenvectors. 
 

For each time 𝑡𝑖, this is equivalent to writing: 

 𝜃(𝒙, 𝑡𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  ∑ 𝛼𝑘(𝑡𝑖)𝜒𝑘⃗⃗⃗⃗ (𝒙)

𝑚𝑖𝑛(𝑁,𝑀)

𝑘=1

 (6) 

With 𝛼𝑘 the singular value scalar coefficients (resulting from the product 𝑨 ∗ 𝑽𝑻) and, 𝜒𝑘⃗⃗⃗⃗  the 
orthogonal spatial eigenvectors. 
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To decompose the temperature matrix as described by equation (6) we need to look for the 

eigenvectors that maximize the product between 𝜃  et 𝜒 . From the decomposition (Equations 
(5) and (6)), the model can be reduced. To do this, we take advantage of the specific 
properties of the 𝜜 matrix, which returns the singular values in descending order. These 
values carry the weight of the associated eigenvector: the greater their value, the greater 
the variations along the associated eigenvector. So, in order to reduce the model, we can 
choose the n-first singular values that allow us to reproduce the thermal maps with an 
acceptable minimum level of error. To choose the number of eigenvectors to keep (𝐾), a 
percentage criterion on their weight is proposed via the following relationship: 

 
∑ 𝐀𝑘

𝑛
𝑘=1

∑ 𝐀𝑘
𝑚𝑖𝑛(𝑁,𝑀)
𝑘=1

∗ 100 > 𝜀 (7) 

With 𝑨𝑘 the kth singular value and 𝜀 the criterion used, typically greater than 90%. The 
definition of this criterion is motivated by the aim of model reduction: to speed up the 
calculation while limiting the error generated by this reduction. 
 
The temperature matrix can therefore be reconstructed using the reduced matrix product 
illustrated in Figure-3. The reduction using the POD approach allows the initial matrix 
calculation of size 𝑁 ∗ 𝑀 of the FOM to be replaced by a matrix calculation of size 𝐾 ∗ 𝑀. 
Note that an additional way of reducing the calculation time would be to reduce the number 
𝑀 of time nodes. 

 
Figure-3: Selection of the k first couples singular values / eigenvectors 

 
Learning cases choice 
The construction of the matrix of learning cases is essential to define the axes of maximum 
variation and introducing spatial and temporal eigenvectors as well as singular values to 
reproduce the thermal maps of the stack as faithfully as possible. The aim is therefore to 
minimize the error between the results of the FOM model and those of the reduced ROM 
model. Various combinations of learning scenarios have been studied, and here we present 
a set of seven learning scenarios that give optimum results for the stack operating domain 
under consideration. A thermal condition is specified on each of the six faces of the stack. 
In this way, six learning scenarios are defined with balanced powers between the ceramic 
multilayer and one of the surfaces. One scenario with occasionally unbalanced starting 
conditions completes the set. These 7 scenarios are shown one after the other in Figure-4, 
as the values concatenated in the matrix of learning cases. A thermal map is selected every 
10s to serve as a learning case. 
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 Figure-4: Temperature variations at the center of the stack for the 7 learning scenarios. The 
flow imposed on the lower surface is represented by the blue curve and on the upper surface 

by the orange curve. The green, red, purple and brown curves represent the temperature 
variations on the 4 lateral faces. The pink curve shows the case with punctually unbalanced 

boundaries conditions. 

 
In each of the learning scenarios, the calculation is carried out until the temperatures have 
stabilized, which justifies the longer duration of the stabilisation stages in the first 2 
scenarios. The initial temperatures are different for each case, in order to explore as wide 
an operating range as possible. A total of 8807 learning cases are taken into account in 
building the reduced model, so the learning matrix is 7497*8807 and induces 7497 
eigenvectors. To select the number of eigenvectors onto which the equations will be 
projected, the criterion 𝜀 is set at 99.999%. As shown in Figure-5, this criterion is satisfied 
with the first 41 singular values, so the reduced model is constructed by projecting the heat 
conduction equation onto the 41 eigenvectors. 
 

 
Figure-5: Values of the first 250 singular values in logarithm format (blue and grey bars). 

The red crosses and grey curve show the ratio of singular values selected to the total 
sum of singular values available. The blue bars and red crosses are the singular values 

selected by the chosen criterion value 99.999%. 
 

3. Validation of the ROM by comparison with the FOM 
 

Once the reduced model has been built, it needs to be validated. This validation is carried 
out by comparing the results obtained with the ROM model with those of the FOM model on 
one or more scenarios distinct from those used for training. In the case presented here, 
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corresponding to that shown in Figure-2Erreur ! Source du renvoi introuvable., the 
comparison concerns the error between the results of the two models, FOM and ROM, and 
the respective calculation times. Figure-6 shows the temperature variations obtained with 
the FOM and ROM models. It can be seen that the average error between these two models 
is less than 0.01 K and that the maximum error is 0.06 K. The ROM model is therefore 
capable of simulating with a high degree of accuracy the thermal behavior of a SOEC stack 
under operating conditions that differ from the training scenarios.  
The computation time of the ROM is 55 times faster than the FOM, enabling computation 
times compatible with its integration into a system model or its use in real time. 
 

 
Figure-6: Temperature variation at 3 points on the stack: at the center of the cell stack, on 

the side surface of the stack and on the bottom surface of the stack. The stack is subjected 
to 4 different current intensity levels during this simulation: 0.4, 0.8, 1.2, 1.25 A/cm². The 

lines represent the variations of the reduced model, the crosses the variations of the 
complete model. 

 

4. Conclusion 
 

This study presents a model reduction methodology using a POD approach applied to a 
transient 3D model of the conductive thermal behavior of a SOEC stack. The performance 
of the reduced model constructed was compared with that of a complete physical model in 
terms of error and computation time. With a judicious choice of learning scenarios, the 
reduced model appears to reproduce satisfactorily the thermal behavior of the stack with a 
high degree of accuracy (less than 0.01 K) in the selected study domain, while dividing the 
calculation time by a factor of 55. 
The continuation of this work will focus on comparing the results of this ROM model with 
experimental results, and on integrating a larger number of physical mechanisms. 
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